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A method for calculating the asymptotic diffusion lengths (the so-called discrete 
eigenvalues) without use of the usual Legendre expansions is presented for the case 
of one speed particle transport in a highly anisotropically scattering medium. This 
technique which uses the scattering or phase function directly reduces the problem to 
a matrix eigenvalue problem. Very accurate numerical results are obtained for low 
absorption cases (large eigenvalues) and highly forward anisotropic scattering-situa- 
tions common to radiative transfer problems. 

1. INTRODUCTION 

The discrete eigenvalues or diffusion lengths in one speed particle transport 
theory play a dominant role in the description of the asymptotic behavior of the 
particle density far from sources. Techniques for computing these eigenvalues 
for anisotropic scattering situations have been investigated by a number of authors 
[l-4]. In all these investigations, the scattering or phase function was expanded in 
terms of Legendre polynomials, and while such an expansion has significant 
analytical advantages, the discrete eigenvalues are found from the zeros of a 
dispersion function which becomes numerically difficult to evaluate for high degrees 
of anisotropy (or order of the scattering function expansion). Several equivalent 
forms of the dispersion function have been used but essentially they are of two 
principle types: integral formulations [l, 5, 61 in which the integrands oscillate 
rapidly for high order expansions, and formulations involving only polynomials 
and associated Legendre functions [3, 71 which likewise are difficult to evaluate 
numerically for very high order expansions. 

In this paper a direct technique for evaluating the discrete eigenvalues is presented 
which does not require the usual Legendre expansions and thereby avoids the 
numerical problems when very high order expansions (>50) are indicated. Use 
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of numerical quadrature in the statement of the eigenvalue problem, immediately 
reduces the problem to that of the matrix eigenvalue problem encountered in the 
discrete ordinate formulation of the transport equation [8]. It is shown that this 
matrix eigenvalue problem can be reduced to a smaller equivalent matrix problem 
by using the symmetry of Gauss quadrature ordinates and the positive-negative 
property of the discrete eigenvalues. The reduced matrix eigenvalue problem 
is found to be well suited for numerical solution by standard techniques, and 
except for those discrete eigenvalues whose absolute value is very close to 
unity, this technique produces very accurate results even if the scattering is highly 
anisotropic. 

2. DERIVATION OF THE MATRIX EIGENVALUE PROBLEM 

The eigenvalue problem associated with the one speed transport of particles in 
a medium with plane geometry can be written as [l] 

where c is the mean number of secondary particles produced per collision, 4” 
and v the eigenfunction and eigenvalue respectively (with dV E LJ- 1, l] and v 

complex #[ - 1, l]), and f the azimuthally averaged scattering function 

(2.2) 

where SL’ and Q are, respectively, the unit vectors in the direction of the particle 
before and after a collision, Sz = (cos-I TV, #J), Jz’ = (COYI p’, 4’). By using an 
even N point Gaussian quadrature, Eq. (2-l) can be approximated by 

Wv = ; 4, (2.3) 

where B is an N x N matrix defined by 

(2.4) 

and v and 4, are, respectively, the eigenvalue and eigenvector. In Eq. (2.4) 6,,j 
is the Kronecker delta symbol, pi and u’~ the ith Gaussian quadrature point and 
corresponding Christoffel number respectively, and fi.j is given by 

581/20/3-6 
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The discrete formulation of the eigenvalue problem of Eqs. (2.3) to (2.5) is 
essentially the discrete ordinate formulation of the problem studied by 
Chandrasekhar [8] without the expansion of the scattering function in Legendre 
polynomials. Based on Eq. (2.3), Odom [9] computed successfully the discrete 
eigenvalues (V 6 (- 1, 1)) for several cases of anisotropic scattering. As the scattering 
function becomes increasingly peaked in the forward direction, the off-diagonal 
terms in B becomes increasingly smaller, and the retention of the diagonal and 
only a few neighboring off-diagonals in B is found to also yield good results. 

Considerable computational effort can be avoided by converting the eigenvalue 
problem of Eq. (2.3) to one involving a matrix of a smaller rank. Towards this 
end, define a matrix A by 

Ai.j = (2)llp - (si.N+l-j - ~is*.j)(~j~j)~'j)l'*, i,j= I,2 ,..., N (2.6) 

with 

aj = --I, if 1 < i < N/2 
(2.7) 

= 1, ifN/2 <i<N. 

It is noted that the number of quadrature points N is assumed to be even and the 
Pi’s &I < P2 < .** < Pi) and the wi’s satisfy the conditions: 

%& = aN+l-ifLN+l-i > 0, Wj = W&f+1-i > 0, i = 1, 2,..., N/2. (2.8) 

Further, since the azimuthally averaged scattering function has the property 
f (J..L~ , pi) = f&j , pi) = f (-pi , -&, it follows that 

h.i = 5-i = fNt-l--i.N+l-i 7 i,j = 1,2 ,..., N. (2.9) 

The inverse of A is given by 

(2.10) 

and using this result and Eqs. (2.6) to (2.9) it is found that 

(ABA-l)i,j = 4[(aj - mt) Pt.7 + (aiaj - 1) Pi.N+l-jl 
with 

which has properties similar to those of fi,j as given by Eq. (2.9). Because the 
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matrices B and ABA-l are related by a similarity transformation, they have identical 
eigenvalue spectra [lo]. Furthermore, with the help of Eq. (2.7) it is seen that 

[ABA-Q := 0 (2.13) 

if (1) i < N/2 and j < N/2, or (2) i > N/2 and j > N/2, and consequently 

M(ABA-l) M-l = - ABA-l (2.14) 

with the matrix M and its inverse M-l defined by 

Mi,i = MT,;. = LYJ~,~ . (2.15) 

In other words, the matrix ABA-ml and its negative are related by a similarity 
transformation. Thus we conclude that, if h (=1/v) is an eigenvalue of ABA-l, 
then so is -X. Because ABA-l is a real matrix, it follows that X* (the complex 
conjugate of h) and --h* must also be eigenvalues of ABA-l. All these conclusions, 
of course, apply also to the matrix B. In Appendix A it is shown that if 
c( 1 - ~12) < 1 (where E is the error obtained by evaluating Jil dp’ f(p, p’) by 
numerical quadrature) then all the eigenvalues of B are necessarily real. However, 
it is found that for c > 1 some of the eigenvalues become imaginary or even 
complex. 

If ABA-’ is written as 

ABA-l = (; ;) 

with E and F two N/2 x N/2 matrices, then it follows that 

AB2A-l = (“,” ;E) . 

(2.16) 

(2.17) 

The implication of Eq. (2.17) is that, if h is an eigenvalue of B then X2 must be an 
eigenvalue of one of the matrices EF or FE. If it is further assumed that the matrix 
B is nonsingular then it is easy to see that the matrices EF and FE are related by 
a similarity transformation and thus X2 must be an eigenvalue of both matrices 
EF andEE. As a matter of fact, it follows from Eq. (2.16) that both E andF must 
be nonsingular if B is nonsingular and thus 

EF = E(FE) E-l. (2.18) 

In summary, it has been shown that if h is an eigenvalue of B then X2 must be 
an eigenvalue of both matrices EF and FE. This fact coupled with the fact that the 
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eigenvalues of the matrix B appear in the combinations fh, &X* shows that, as 
far as the computation of eigenvalues is concerned, the N/2 x N/2 matrix EF 
(or FE) is as useful as the larger N x N matrix B. 

3. NUMERICAL CONSIDERATIONS 

Computer codes have been written to evaluate the discrete eigenvalues from the 
matrices B and EF using efficient matrix eigenvalue subroutines [I 1, 121. As is to 
be expected the computations using the N/2 x N/2 EF matrix is considerably 
faster than using the N x N B matrix (at least by a factor of three and even greater 
for large N), although identical results are obtained with both methods for the same 
order N of numerical quadrature. For a given quadrature N, the eigenvalues h2 
of EF will not only contain some discrete eigenvalue but also some eigenvalues 
in the continuum (IW( - 1, 1)); and as N increases eventually all discrete eigenvalues 
will be obtained and the continuum will begin to fill. 

The matrix eigenvalue technique is very accurate for the calculation of those 
real discrete eigenvalues ) v 1 > 1.05 and the complex discrete eigenvalues (for 
c > 1). In many cases very low quadrature orders are sufficient to obtain an 
accurate value of the asymptotic diffusion length (the largest v). However for the 
calculation of the discrete eigenvalues close to unity, i.e., I v I < 1.05, the present 
technique requires that a high order numerical quadrature (and hence a large 
matrix size) be used. This effect is illustrated in Table I where the discrete eigenvalue 

TABLE I 

Discrete Eigenvalues for Isotropic Scattering 
Matrix Method 

c N=8 N = 64 Exact value 

0.1 0.96607116 0.999444416428 1.000000004122 
0.2 0.97440188 0.999893864352 1.000090886544 
0.3 0.98720242 1.002591431962 1.002592888793 
0.4 1.00773253 1.014585815901 1.014585815927 
0.5 1.04223056 1.044382033761 1.044382033761 
0.6 1.10169000 1.102132021151 1.102132021151 
0.7 1.20675158 1.206804253985 1.206804253985 
0.8 1.40763161 1.407634309063 1.407634309063 
0.9 1.90320484 1.903204856045 I .903204856045 
1.1 i 1.75665198 i 1.756651966318 i 1.756651966318 
1.3 i 0.94600580 iO.946000224918 iO.946000224918 
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for isotropic scattering (f = 1) as calculated by the matrix method is compared 
to the exact value (as computed from the explicit form of the dispersion function 
[5]) for various values of c. 

To illustrate the application to highly anisotropic scattering situations the 
following fictitious scattering function is used [ 1, 131 

M = 0, 1, 2.... (3.0 

This function becomes highly peaked in the forward direction as the index M 
increases, and has the useful property of being expandable into a M + 1 Legendre 
polynomial sum, i.e. 

f(Q . Sk’) = F b,P,(Q * sz’), (3.2) 
m=0 

where the expansion coefficients are given by 

The azimuthally averaged scattering function, f(j+ p’), is readily obtained from 
Eq. (3.2) by use of the addition theorem for Legendre polynomials. 

The eight discrete eigenvalues for the case of A4 = 200 and c = 0.95 as computed 
by the matrix technique with various orders of numerical quadrature, N are 

TABLE II 

Discrete eigenvalues for M = 200 and c = 0.95 as calculated with the matrix technique and a 
Legendre expanded integral form of the dispersion relation [14]. 

Legendre 
expansiona N= 16 

Matrix technique 
N = 20 N = 24 N- 32 N = 64 

VI 1.02602204 - - - 1.024535 1.02602204 
“2 1.12581670 1.01 1.15 1.135 1.125851 1.12581670 
% 1.32006749 1.58 1.38 1.132 1.320074 1.32006748 
“4 1.66953495 2.05 1.71 1.672 1.669537 1.66953515 
% 2.31402373 2.72 2.35 2.316 2.314020 2.31401898 
% 3.59579677 4.15 3.64 3.598 3.595887 3.59588645 
“7 6.44175667 7.47 6.50 6.443 6.440667 6.44066643 
v3 13.5342422 16.16 13.67 13.544 13.540653 13.54065275 

D Only first 99 Legendre coefficients were used for Y~ to P; , and lirst 50 coefficients for the Y* 
calculation. 
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compared in Table II with those values computed with a conventional Legendre 
expanded integral form of the dispersion relation [I, 141. For this example there 
are eight discrete eigenvalue pairs, and the values shown for N = 64 are estimated 
to be correct to eight significant figures. Notice that for small values of N the 
smaller discrete eigenvalues have the most error (in fact the smallest may be missed 
entirely). It has been found that generally the quadrature order used should be 
at least four times the number of discrete eigenvalue pairs for highly anisotropic 
situations (N > 50) to give the eigenvalues to within one percent accuracy. 
Generally the order, N, is increased until the eigenvalues remain unchanged with 
increasing order. For the A4 = 200 example, the Legendre expanded form of the 
dispersion relation yielded excellent values for the small eigenvalues, but very poor 
values for the large eigenvalues. This inaccuracy of the Legendre expansion 
technique is to be expected since, in the example given, a one hundred term 
expansion (50 for the largest eigenvalue) was used. The use of such large expansions 
requires the computation of sums of polynomials up to order 100 (or 50 for the 
largest eigenvalue) with arguments equal to the discrete eigenvalue to be 
accurately evaluated-a feat beyond the capability of current computers using 
standard programming techniques. Such numerical errors for the larger eigenvalues 
can, of course, be avoided by using a lower order approximation since there is 
generally rapid convergence of the larger eigenvalues with the order of the Legendre 
approximation [3, 151. The direct technique however, avoids such numerical 
difficulties by not using Legendre expansions. 

To verify the accuracy of the present technique, it is necessary to obtain an 
independent estimate of the diffusion length. Although for highly anisotropic 
situations and large diffusion lengths (c close to unity) the standard dispersion 
function approach is inadequate, a rapidly converging series expansion for the 
diffusion length can be used. KugEer [16] reported the following expansion of the 
largest eigenvalue which has been found to be rapidly convergent as c -+ 1: 

lq2 N h,h,[l - 4h,/h, + h,2(16/h22 - 36h,/1r22h, + O(h,3)J (3.4) 

where h, = (2M + 1) - cb, . In Table III it is seen there is excellent agreement 
between values of the diffusion length as calculated by Eq. (3.4) (ignoring the O(ho3) 
and higher order terms) and by the matrix technique for M = 200 as c approaches 
unity. 

The matrix technique has been found to be significantly faster than the use of 
a fully Legendre expanded dispersion function [14] (typically a factor of ten) 
and, for large eigenvalues, capable of better accuracy. No difficulties are 
encountered as c becomes close to unity, and in fact, no special computational 
modifications are required if c becomes greater than unity and some of the discrete 
eigenvalues becomes imaginary or complex. 
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TABLE III 

Diffusion length for M = 200 as calculated by a third 
order series expansion [16] and the matrix technique. 

C Series expansion 
Matrix technique 

N=64 

.9 1.89 7.5873110 

.99 45.16 45.223705 

.999 177.2439 177.24474 

.9999 578.13274 578.13272 

.99999 1834.1805 1834.1805 

APPENDIX 

Under the conditions c < 1, all the eigenvalues of Eq. (2.3) are real if the value 
of N is chosen sufficiently large. To show this result first define 

f 
+1 

Ei E -l f (pi 9 CL’) G’ - j$l.L,jwi = 2 - $ .h,jb**j 3 i= 1 ,..., N. (A.l) 
j=l 

If it is assumed that f &, p’) is nonnegative and 

C[l - 6i/2] < 1, i = 1, 2 ,..., N. 

then it is easy to see that 

(A-2) 

f IW) fi.i6ww” I 
(bVi)l” 

(Wj)‘/2 < 1, i = 1, 2 ,..., N. 
j=l 

To proceed further, the following theorem is used [17]: 

THEOREM. If A is an arbitrary N x N complex matrix, and x1, x2 ,..., xN are 
N positive numbers, let 

then, p(A) < r, with p(A) E spectral radius of A. 
From this theorem, Eq. (A.3) implies that 

P(I -S)<l 64.4) 
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where I is the N x N identity matrix and S a N x N matrix defined by 

S{,j = 6i.j - $fi,((Will?j)l”* (A.5) 

If (T is any eigenvalue of S, then Eq. (A.4) implies that 

11--a\ <I. (A.6) 

Because the matrix S is real and symmetric, u must be real. This result coupled 
with Eq. (A.6) implies that CJ is positive, and it follows that the matrix S is real, 
symmetric and positive-definite. A matrix with these properties has a uniquely 
defined square root which also possesses these properties [18]. In other words, 
there exists a real, symmetric and positive-definite matrix S@ such that 

sv2s1/8 = s (A.7) 

From a straightforward calculation it is found that B is related to a real sym- 
metric by a similarity transformation, namely 

(SWW) B(,‘$PW)-1 = SW+-1SlP 64.8) 

with the diagonal matrices W and t.~ defined by 

Wi,j = fi Si,j 3 (A-9) 

and 

PP.5 = Pi &.* (A.10) 

Because the eigenvalue spectrum of the real symmetric matrix ,!P+.c-~S~~ is real, 
then so is that of the matrix B. 

Finally it is noted that 

lim ci = 0, 
N+- 

i =I, 2,..., N (A.11) 

and thus if c < 1, Eq. (A.2) can always be realized by choosing N sufficiently 
large. 
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